Spectral Theory of Differential Operators and Energy Levels of Subatomic Particles
نویسندگان
چکیده
Motivated by the Bohr atomic model, in this article we establish a mathematical theory to study energy levels, corresponding to bounds states, for subatomic particles. We show that the energy levels of each subatomic particle are finite and discrete, and corresponds to negative eigenvalues of the related eigenvalue problem. Consequently there are both upper and lower bounds of the energy levels for all sub-atomic particles. In particular, the energy level theory implies that the frequencies of mediators such as photons and gluons are also discrete and finite. Both the total number N of energy levels and the average energy level gradient (for two adjacent energy levels) are rigorously estimated in terms of some physical parameters. These estimates show that the energy level gradient is extremely small, consistent with the fact that it is hard to notice the discrete behavior of the frequency of subatomic particles.
منابع مشابه
Asymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کامل